Predicción de mortalidad en pacientes con enfermedad renal crónica en hemodiálisis: inteligencia artificial frente a los modelos predictivos tradicionales

Autores/as

Palabras clave:

ENFERMEDAD RENAL CRÓNICA, MORTALIDAD, HEMODIÁLISIS, INTELIGENCIA ARTIFICIAL, APRENDIZAJE AUTOMÁTICO.

Resumen

Fundamento: los modelos predictivos tradicionales para la predicción de mortalidad en pacientes con enfermedad renal crónica, presentan numerosas limitaciones que limitan su implementación en la práctica clínica. La aplicación de algoritmos de la inteligencia artificial podría contribuir a mejorar la precisión de las predicciones.

Objetivo: describir la predicción de mortalidad en pacientes con enfermedad renal crónica en hemodiálisis mediante modelos predictivos tradicionales y algoritmos de la inteligencia artificial.

Métodos: se realizó una revisión bibliográfica sobre la predicción de mortalidad en los pacientes con enfermedad renal crónica en hemodiálisis. Se utilizaron las bases de datos PubMed, SciELO, Web of Science, Scopus, Ebsco y Clinical Key. Las estrategias de búsqueda fueron: [(chronic kidney disease OR renal insufficiency OR end-stage renal disease) AND (hemodialysis) AND (mortality) AND (predictive models) AND (artificial intelligence OR machine learning)].

Resultados: a pesar de la gran cantidad de literatura sobre metodología de predicción, los métodos utilizados en muchas investigaciones que presentan modelos predictivos tradicionales no cumplen con los estándares y la calidad de los informes de métodos y resultados es deficiente. Los algoritmos de la inteligencia artificial tienen la capacidad de analizar grandes volúmenes de datos clínicos y biomédicos, identificar relaciones no lineales y predecir resultados clínicos con una precisión sin precedentes, lo que permitiría tomar decisiones terapéuticas más informadas y personalizadas.

Conclusiones: los algoritmos de la inteligencia artificial presentan numerosas bondades que, si se aplican en el diseño de nuevos modelos predictivos, se pueden superar las limitaciones de los modelos predictivos tradicionales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sergio Orlando Escalona González, Universidad de Ciencias Médicas de Las Tunas

Doctor en Ciencias Médicas. Máster en Atención Primaria de Salud. Especialista de I y II grado en Medicina General Integral. Profesor Asistente. Investigador agregado

Citas

Bello A, Okpechi I, Osman M, Cho Y, Htay H, Jha V, et al. Epidemiology of haemodialysis outcomes. Nature Reviews Nephrology [revista en Internet]. 2022 [citado 18 de febrero 2025]; 18(1): 378-395. Disponible en: https://doi.org/10.1038/s41581-022-00542-7.

Lim DK, Boyd JH, Thomas E, Chakera A, Tippaya S, Irish A, et al. Prediction models used in the progression of chronic kidney disease: A scoping review. PLoS ONE [revista en internet]. 2022 [citado 18 de febrero 2025]; 17(7). Disponible en: https://doi.org/10.1371/journal.pone.0271619.

Bai Q, Tang W. Artificial intelligence in peritoneal dialysis: general overview. Renal Failure [revista en Internet]. 2022 [citado 18 de febrero 2025]; 44(1): 682-687. Disponible en: https://doi.org/10.1080/0886022X.2022.2064304.

Bai Q, Su C, Tang W, Li Y. Machine learning to predict end stage kidney disease in chronic kidney disease. Scientific Reports [revista en internet]. 2022 [citado 18 de febrero 2025]; 12(1): 8377. Disponible en: https://doi.org/10.1038/s41598-022-12316-z.

Kim J, Steingroever J, Lee K, Oh J, Choi M, Lee J. Clinical Interventions and All-Cause Mortality of Patients with Chronic Kidney Disease: An Umbrella Systematic Review of Meta-Analyses. J. Clin. Med [revista en internet]. 2020 [citado 18 de febrero 2025]; 9(2): 394. Disponible en: https://doi.org/10.3390/jcm9020394

Park S, Park BS, Lee YJ, Kim H, Park JH, Ko J, et al. Artificial intelligence with kidney disease A scoping review with bibliometric analysis, PRISMA-ScR. Medicine [revista en internet]. 2021 [citado 18 Feb 2023]; 100(1): 14. Disponible en: http://dx.doi.org/10.1097/MD.0000000000025422.

Ye Z, An S, Gao Y, Xie E, Zhao X, Guo Z, et al. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. European Journal of Medical Research [revista en internet]. 2023 [citado 27 de julio 2024]; 28(1): 33. Disponible en: https://doi.org/10.1186/s40001-023-00995-x.

Escalona-González SO, Caballero-Mota Y, Rodríguez-Alvarez Y, León-Acebo M, González-Milán ZC, Ricardo-Paez B, et al. Diseño de una escala predictiva de mortalidad en pacientes con enfermedad renal crónica. Revista Cubana de Medicina Militar [revista en internet]. 2024 [citado 18 de febrero 2025]; 53(1). Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/17622 .

Noordzij M, van Diepen M, Caskey FC. Relative risk versus absolute risk: one cannot be interpreted without the other. Nephrology Dialysis Transplantation [revista en internet]. 2017 [citado 18 de febrero 2025]; 32(2): 13-18. Disponible en: https://doi.org/10.1093/ndt/gfw465.

Marsk A, Fluck N, Prescott GJ. Looking to the future: predicting renal replacemente outcomes in a large community cohort with chronic kidney disease. Nephrology Dialysis Transplantation [revista en internet]. 2015 [citado 18 de febrero 2025]; 30(9): 1507-1517. Disponible en: https://doi.org/10.1093/ndt/gfv089.

Riphagen IJ, Kleefstra N, Drion I. Comparison of methods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36). Plos One [revista en internet]. 2015 [citado 18 de febrero 2025]; 10(3): e0120477. Disponible en: https://doi.org/10.1371/journal.pone.0120477.

Nusinovici S, Tham Y, Yu M, Ting D, Li J. Logistic regression was as good as machine learning for predicting major chronic diseases. Journal of clinical epidemiology [revista en internet]. 2020 [citado 18 de febrero 2025]; 122(1): 56-69. Disponible en: https://doi.org/10.1016/j.jclinepi.2020.03.002.

Lewis RM, Battey HS. On inference in high-dimensional logistic regression models with separated data. Biometrika [revista en internet]. 2023 [citado 18 de febrero 2025]; 65(1): 1-24. Disponible en: https://doi.org/10.1093/biomet/asad065.

Desai R, Wang S, Vaduganathan, Evers T. Comparison of machine learning methods with traditional models for use of administrative claims with elctronic medical records to predict heart failure outcomes. JAMA [revista en internet]. 2020 [citado 18 de febrero 2023]; 3(1). Disponible en: https://doi.org/10.1001/jamanetworkopen.2019.18962.

Escalona-González SO, González-Milán ZC, Ricardo-Paez B. Mortality prediction in chronic kidney disease using artificial intelligence algorithms. Medicine in a Virtual Age [revista en internet]. 2022 [citado 18 de febrero 2025]. Disponible en: https://conferences.nature.com/event/0b87c6fb-30cf-495a-9da0-88b2a9bf0681/summary.

Battineni G, Sagaro GG, Chinatalapudi N, Amenta F. Applications of machine learning predictive models in the chronic disease diagnosis. Journal of personalized medicine [revista en Internet]. 2020 [citado 18 de febrero 2025]; 10(2): 21. Disponible en: https://doi.org/10.3390/jpm10020021.

Sarma K, Harmon S, Snford T, Roth H, Xu Z, Tetreault J. Federated learning improves site performance in multicenter deep learning without data sharing. Journal of the American Medical Informatics Association [revista en internet]. 2021 [citado 18 de febrero 2025]; 28(6): 1259-1264. Disponible en: https://doi.org/10.1093/jamia/ocaa341.

Shyu C, Putra K, Chen H, Tsai Y, Tozammel K. A systematic review of federated learning in the healthcare area: From the perspective of data properties and applications. Applied Sciences [revista en internet]. 2021 [citado 18 de febrero 2025]; 23(11): 11191. Disponible en: https://doi.org/10.3390/app11231191.

Andaur Navarro C, Damen J, van Smeden M, Takada T. Systematic review identifies the design and methodological conduct of studies on machine learning-based prediction models. Journal of clinical epidemiology [revista en Internet]. 2023 [citado 18 de febrero 2025]; 154(1): 8-22. Disponible en: https://doi.org/10.1016/j.clinepi.2022.11.015.

Kumar Y, Koul A, Singla R, Ijaz M. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of ambient intelligence and humanized computing [revista en internet]. 2023 [citado 18 de febrero 2025]; 14(7): 8459-8456. Disponible en: https://doi.org/10.1007/s12652-021-03612-z.

Rodríguez-Alvarez Y, Caballero-Mota Y, García-Lorenzo MM, Escalona-González SO. Aplicaciones de la inteligencia artificial para la solución de problemas reales en el sector de la salud. En: Rodríguez-Méndez V, Fernández-Ramírez N, editores. Aplicaciones de la inteligencia artificial en la solución de problemas reales. Camagüey: Ediciones Universidad de Camagüey; 2024. p. 62-108.

Escalona-González SO, Caballero-Mota Y, Rodríguez-Alvarez Y, León-Acebo M, González-Milán ZC, Ricardo-Paez B, et al. Red neuronal artificial para la predicción de mortalidad de pacientes con enfermedad renal crónica. Revista Cubana de Medicina Militar [revista en internet]. 2024 [citado 27 de julio 2024]; 53(3). Disponible en: https://revmedmilitar.sld.cu/index.php/mil/article/view/38408.

Díez-Sanmartín C, Sarasa Cabezuelo A, Belmonte AA. A new approach to predicting mortality in dialysis patients using sociodemographic features based on artificial intelligence. Artificial Intelligence in Medicine [revista en internet]. 2023 [citado 27 de julio 2024]; 136(1): 102478. Disponible en: https://doi.org/10.1016/j.artmed.2022.102478.

Simeri A, Pezzi G, Arena R, Papalia G, Szili-Torok T, Greco R, et al. Artificial intelligence in chronic kidney diseases: methodology and potential applications. International Urology and Nephrology. [revista en internet]. 2025 [citado 10 de enero 2025]; 57(1): 159-168. Disponible en: https://doi.org/10.1007/s11255024-04165-8.

Subramanian M, Wojtusciszyn A, Favre L, Boughorbel S, Shan J, Letaief K, et al. Precision medicine in the era of artificial intelligence: implications in chronic disease management. Journal of Translational Medicine. [revista en internet]. 2020 [citado 10 de enero 2025]; 18(1): 472. Disponible en: https://doi.org/10.1186/s12967-020-02658-5.

Descargas

Archivos adicionales

Publicado

2025-12-22

Cómo citar

1.
Escalona González SO, González-Milán ZC. Predicción de mortalidad en pacientes con enfermedad renal crónica en hemodiálisis: inteligencia artificial frente a los modelos predictivos tradicionales. Rev. electron. Zoilo [Internet]. 22 de diciembre de 2025 [citado 23 de enero de 2026];50(1). Disponible en: https://revzoilomarinello.sld.cu/index.php/zmv/article/view/3914

Número

Sección

Artículos de revisión