PaO2/FiO2 relationship as a success predictor in non-invasive ventilation

Authors

  • Gilberto Lázaro Betancourt-Reyes Hospital General Docente “Manuel Ascunce Domenech”, Camagüey.

Keywords:

VENTILATION-PERFUSION RATIO, RESPIRATION, ARTIFICIAL, NONINVASIVE VENTILATION

Abstract

Hypoxemia represents a drastic consequence of numerous diseases. It is imperative that the physician count on all the tools needed to assess it effectively and early. The PaO2/FiO2 ratio, also called Kirby index, is merely a quotient that indirectly reflects changes in the ventilation-perfusion ratio or presence of pulmonary shunts. Many studies are in favor of its application as a predictor of mortality, as well as a success predictor of non-invasive mechanical ventilation, besides being useful in the follow-up of a seriously ill patient, from a hemogasometric viewpoint, who is receiving this type of ventilation. This the reason why a bibliographic review article was carried out using the services available in Infomed with the objective to identify relevant research works that deal with the importance of the Kirby index as a success and follow-up predictor of the non-invasive mechanical ventilation.

Downloads

Download data is not yet available.

Author Biography

Gilberto Lázaro Betancourt-Reyes, Hospital General Docente “Manuel Ascunce Domenech”, Camagüey.

Residente de tercer año de la especialidad Medicina Intensiva y Emergencias. Investigador Agregado

References

Kaditis AG, Alonso Alvarez ML, Boudewyns A, et al. Obstructive sleep disordered breathing in 2- to 18-year-old children: diagnosis and management. The European respiratory journal [revista en internet]. 2016 [citado 25 de diciembre 2017]; 47: 69-94. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/265 41535.

Thomrongpairoj P, Tongyoo S, Tragulmongkol W, Permpikul C. Factors predicting failure of noninvasive ventilation assist for preventing reintubation among medical critically ill patients. Am J Respir Crit Care Med [revista en internet]. 2017 [citado 25 de diciembre 2017]; 38: 177-181. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29258722.

Mas A, Masip J. Noninvasive ventilation in acute respiratory failure. International journal of chronic obstructive pulmonary disease [revista en internet]. 2014 [citado 25 de diciembre 2017]; 9: 837-52. Disponible en: https://www.dovepress.com/noninvasive-ventilation-in-acute-respiratory-failure-peer-review ed-article-COPD.

Ramsay M, Hart N. Current opinions on non-invasive ventilation as a treatment for chronic obstructive pulmonary disease. Curr Opin Pulm Med [revista en internet]. 2013 [citado 25 de diciembre 2017]; 19(6): 626–630. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24060980.

Non-invasive positive pressure ventilation should be considered in patients with COPD and persistent hypercapnia at least 2 weeks after resolution of acute respiratory failure. Evid Based Nurs [revista en internet]. 2018 [citado 25 de diciembre 2017]; 21(1): 12. Disponible en: https://www.ncbi.nlm.nih.gov/pub med/29175966.

Masclans J.R. Pérez-Terán P. Roca O. Papel de la oxigenoterapia de alto flujo en la insuficiencia respiratoria aguda. Med Intensiva [revista en internet]. 2015 [citado 25 de diciembre 2017]; 39(8): 505-15. Disponible en: https://www.medintensiva.org/es/pdf/S0210569115001217/S300/.

Chiumello D, Coppola S, Froio S, Gregoretti C, Consonni, D. Noninvasive ventilation in chest trauma: systematic review and meta-analysis. Intensive Care Med [revista en internet]. 2013 [citado 25 de diciembre 2017]; 39(7): 1171-80. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23571872.

Gotera C, Díaz-Lobato S, Pinto T, Winck JC. Clinical evidence on high fl ow oxygen therapy and active humidifi cation in Adults. Rev Port Pneumol [revista en internet]. 2013 [citado 25 de diciembre 2017]; 19(5): 217-227. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23845744.

Frat JP, Thille AW, Mercat A, Girault, C, Ragot S, Perbet S, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med [revista en internet]. 2015 [citado 25 de diciembre 2017]; 372(23): 2185-96. Disponible en: http://www.nejm.org/doi/full/10.1056/NEJMoa1503326.

Hess DR. Noninvasive ventilation for acute respiratory failure. Resp Care [revista en internet]. 2013 [citado 25 de diciembre 2017]; 58(6): 950-69. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23709 194.

Yáñez P. L. Ventilación no invasiva en el paciente con falla respiratoria aguda. Neumol Pediatr [revista en internet]. 2017 [citado 25 de diciembre 2017]; 12(1): 9–14. Disponible en: http://www.neumologia-pediatrica.cl/wp-content/uploads/2017/06/ventilacion-invasiva.pdf.

Kallet RH, Campbell AR, Dicker RA. The effects of tidal volume demand on work of breathing during lung protective ventilation in patients with acute lung injury and acute respiratory distress syndrome. Crit Care Med [revista en internet]. 2006 [citado 25 de diciembre 2017]; 34(1): 8-14. Disponible en: https://www. ncbi.nlm.nih.gov/pubmed/16374150.

Flick GR, Bellamy PE. Diaphragmatic contraction during assisted mechanical ventilation. Chest [revista en internet]. 1989 [citado 25 de diciembre 2017]; 96(1): 130-5. Disponible en: https://www.ncbi.nlm.nih.gov/ pubmed/2736970.

Thokala P, Goodacre S, sala M, Penn-Ashman J. Cost-effectiveness of out-of-hospital continuous positive airway pressure for acute respiratory failure. Ann Emerg Med [revista en internet]. 2015 [citado 25 de diciembre 2017]; 65(5): 556-563. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25737210.

Marohn K, Panisello JM. Noninvasive ventilation in pediatric intensive care. Curr Opin Pediatr [revista en internet]. 2013 [citado 25 de diciembre 2017]; 25(3): 290-96. Disponible en: https://www.ncbi.nlm.nih.gov /pubmed/23652681.

Esquinas A, Zuil M, Scala R, Chiner E. Bronchoscopy during non-invasive mechanical ventilation. A review of techniques and procedures. Arch Bronconeumol [revista en internet]. 2013 [citado 25 de diciembre 2017]; 49(3): 105-112. Disponible en: https://pdfs.semanticscholar.org/7e24/cafea71232147402cf0c47b4 5465f325dd41.pdf.

Cabrini L, Nobile L, Cama E, Borghi G, Pieri M, Bocchino S, et al. Non-invasive ventilation during upper endoscopies in adult patients. A systematic review. Minerva Anestesiol [revista en internet]. 2013 [citado 25 de diciembre 2017]; 79: 683-94. Disponible en: http://www.minervamedica.it/en/journals/minerva-anestesiologica/article.php?cod=R02Y2013N06A0683.

Folgado MA, de la Serna C, Llorente A, Rodríguez S, OchoaC, Díaz-Lobato S. Utility of non-invasive ventilation in high-risk patients during endoscopic retrograde cholangiopancreatography. Lung India. [revista en internet]. 2014 [citado 25 de diciembre 2017]; 31(4): 331-5. Disponible en: http://www.lung india.com/article.asp?issn=0970-2113;year=2014;volume=31;issue=4;spage=331;epage=335;aulast= Folgado.

Pisano A, Angelone M, Iovino T, Gargiulo S, Manduca S, de Pietro A. Transesophageal echocardiography through a non-invasive ventilation helmet. J Cardiothorac Vasc Anesth [revista en internet]. 2013 [citado 25 de diciembre 2017]; 27(6): e78-81. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24267579.

Moretti M, Cilione C, Tampieri A, Fracchia C, Marchioni A, Nava S. Incidence and causes of non-invasive mechanical ventilation failure after initial success. Thorax [revista en internet]. 2000 [citado 25 de diciembre 2017]; 55(10): 819–25. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/10992532.

Bhattacharyya D, Ramprasad R. Early predictors of success of non-invasive positive pressure ventilation in hypercapnic respiratory failure. MJAFI [revista en internet]. 2011 [citado 25 de diciembre 2017]; 67(4): 315-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27365838.

Published

2018-04-06

How to Cite

1.
Betancourt-Reyes GL. PaO2/FiO2 relationship as a success predictor in non-invasive ventilation. Rev. electron. Zoilo [Internet]. 2018 Apr. 6 [cited 2025 Nov. 6];43(4). Available from: https://revzoilomarinello.sld.cu/index.php/zmv/article/view/1254

Issue

Section

Literature reviews