Immunogenicity prediction of the SARS-CoV-2 protein responsible of COVID-19 infection in humans

Authors

  • Orlando Rafael Serrano-Barrera Hospital General Docente “Dr. Ernesto Guevara de la Serna”, Las Tunas. Universidad de Ciencias Médicas de Las Tunas. Facultad de Ciencias Médicas “Dr. Zoilo Enrique Marinello Vidaurreta”. Las Tunas. https://orcid.org/0000-0002-2605-6999

Keywords:

IMMUNOGENICITY, VACCINE, SEVERE ACUTE RESPIRATORY SYNDROME, SARS VIRUS, CORONAVIRUS INFECTIONS, SIALYLTRANSFERASES, VACCINES

Abstract

Background: the structural and functional characteristics of the SARS-CoV-2 S glycoprotein make it a relevant antigen, and a desirable target for vaccine and drug development, since its blockade or neutralization would hinder the whole infectious cycle.

Objective: to model, with the aid of bioinformatic tools, the immunogenicity of S glycoprotein, by identifying the peptides that could be recognized by human T and B lymphocytes.

Methods: 8 different sequences of S glycoprotein were aligned by using CLUSTAL O, in order to assess the conservation of the receptor-binding domain. HLA-A* 0201, HLA-DRB1* 0301 and HLA-DRB1* 0701 alleles were selected for T-cell epitope prediction, with the use of SYFPEITHI, IEDB and NetMHC/NetMHCII algorithms. In the case of linear B-cell epitopes, BepiPred-2.0, ABCpred, BcePred and BepiPred/IEDB were the chosen tools.

Results: a complete homology was found among the sequences used to compare the degree of conservation of the molecular structure, particularly in the receptor-binding domain. The region spanning from residues 207 to 222 contains B-cell and CD4+ T-cell epitopes, while within the positions 133-147 and 407-425, B-cell and CD8+ T-cell epitopes were abundant; all such regions are located in the external domain of the protein. In the receptor-binding motif, there are several B-cell epitopes and residues of direct interaction between S glycoprotein and ACE2.

Conclusions: the SARS-CoV-2 S glycoprotein has an immunogenic potential with which T and B responses can be generated.

Downloads

Download data is not yet available.

Author Biography

Orlando Rafael Serrano-Barrera, Hospital General Docente “Dr. Ernesto Guevara de la Serna”, Las Tunas. Universidad de Ciencias Médicas de Las Tunas. Facultad de Ciencias Médicas “Dr. Zoilo Enrique Marinello Vidaurreta”. Las Tunas.

Especialista de Segundo Grado en Inmunología. Máster en Enfermedades Infecciosas. Investigador Auxiliar. Profesor Auxiliar

References

Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochemical and Biophysical Research Communications [revista en internet]. 2020 [citado 28 de abril 2020]; 525: 135-140. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092824/.

Yuan M, Wu NC, Zhu X, Lee CCD, So RTY, Lv H, et al. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science [revista en internet]. 2020 [citado 28 de abril 2020]; doi: 10.1126/science.abb7269. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7164391/.

S Glycoprotein. UniProt, 2020 [citado 28 de abril 2020]. Disponible en: https://covid-19.uniprot.org/uniprotkb/P0DTC2.

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell [revista en internet]. 2020 [citado 28 de abril 2020]; 180: 1–12. Disponible en: https://www.sciencedirect.com/science/article/pii/S0092867420302622.

Su Z, Wu Y. A Multiscale and Comparative Model for Receptor Binding of 2019 Novel Coronavirus and the Implication of its Life Cycle in Host Cells. BioRxiv. 2020 [citado 28 de abril 2020]; doi: https://doi.org/10.1101/2020.02.20.958272. Disponible en: https://www.biorxiv.org/content/10.1101/2020.02.20.958272v1.full.

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science [revista en internet]. 2020 [citado 6 de abril 2020]; 367: 1444–1448. Disponible en: https://science.sciencemag.org/content/367/6485/1444.full.

Joyce MG, Sankhala RS, Chen WH, Choe M, Bai H, Hajduczki A, et al. A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein. BioRxiv. 2020 [citado 28 de abril 2020]; doi: https://doi.org/10.1101/2020.03.15.992883. Disponible en: https://www.biorxiv.org/content/10.1101/2020.03.15.992883v1.full.

Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe [revista en internet]. 2020 [citado 28 de abril 2020]; 27(4): 671–680.e2. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142693/.

Jaimes JA, André NM, Chappie JS, Millet JK, Whittaker GR. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. Journal of Molecular Biology [revista en internet]. 2020 [citado 28 de abril 2020]; S0022-2836(20)30287-4. doi: https://doi.org/10.1016/j.jmb.2020.04.009. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7166309/.

Basu A, Sarkar A, Maulik U. Strategies for vaccine design for corona virus using Immunoinformatics techniques. BioRxiv. 2020 [citado 28 de abril 2020]; doi: https://doi.org/10.1101/2020.02.27.967422. Disponible en: https://www.biorxiv.org/content/10.1101/2020.02.27.967422v1.abstract.

Lee CHJ, Koohy H. In silico identification of vaccine targets for 2019-nCoV. F1000Research [revista en internet]. 2020 [citado 28 de abril 2020]; 9: 145. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111504.1/.

Paradoa ML, Middleton D, Acosta A, Sarmiento ME, Leyva J. HLA genes in a sample of the Cuban population. Vaccimonitor [revista en internet]. 2000 Sep [citado 18 de abril 2020]; 9(3): 1-5. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-028X2000000300001&lng=es.

Ferrer A, Nazábal M, Companioni O, de Cossío MEF, Camacho H, Cintado A, et al. HLA class I polymorphism in the Cuban population. Human Immunology [revista en internet]. 2007 [citado 28 de abril 2020]; 68(11): 918-927. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0198885907004363.

Robson B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed Achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Computers in Biology and Medicine [revista en internet]. 2020 [citado 28 de abril 2020]; 103749. doi: 10.1016/j.compbiomed.2020.103749. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151553/.

Rasheed MA, Raza S, Zohaib A, Yaqub T, Rabbani M, Riaz MI, et al. In silico Identification of novel B Cell and T cell epitopes of Wuhan coronavirus (2019-nCoV) for effective multi epitope-based peptide vaccine production. Preprints [revista en internet]. 2020 [citado 28 de abril 2020]; 2020020359. doi: 10.20944/preprints202002.0359.v1. Disponible en: https://www.preprints.org/manuscript/202002.0359/v1.

Published

2020-05-05

How to Cite

1.
Serrano-Barrera OR. Immunogenicity prediction of the SARS-CoV-2 protein responsible of COVID-19 infection in humans. Rev. electron. Zoilo [Internet]. 2020 May 5 [cited 2025 Sep. 19];45(3). Available from: https://revzoilomarinello.sld.cu/index.php/zmv/article/view/2270

Issue

Section

Original articles